Homework 9 Solutions

Math 131B-1

- We see that $\|f+g\|_{2}^{2}=\langle f+g, f+g\rangle=\langle f, f\rangle+\langle f, g\rangle+\langle g, f\rangle+\langle g, g\rangle=\langle f, f\rangle+\langle g, g\rangle=$ $\|f\|_{2}^{2}+\|g\|_{2}^{2}$.
- We know $|g(x)|<M$ for some $M>0$. Therefore

$$
\begin{aligned}
\left|f * g(x)-f * g\left(x^{\prime}\right)\right| & =\left|\int_{0}^{1} f(y) g(x-y) d y-\int_{0}^{1} f\left(y^{\prime}\right) g\left(x^{\prime}-y\right) d y\right| \\
& \leq 2 M\left|\int_{0}^{1}\left(g(x-y)-g\left(x^{\prime}-y\right)\right) d x\right|
\end{aligned}
$$

Now, since g is uniformly continuous, given $\epsilon>0$ there is some δ such that if $\left|x-x^{\prime}\right|<\delta$, $\left|g(x-y)-g\left(x^{\prime}-y\right)\right|<\frac{\epsilon}{2 M}$. So as long as $\left|x-x^{\prime}\right|<\delta$, we have $\left|f * g(x)-f * g\left(x^{\prime}\right)\right|<\epsilon$.

- (16.2.3) Let $f \in C(\mathbb{R} / \mathbb{Z} ; \mathbb{C})$ be nonzero. Let $a=\|f\|_{\infty}=\sup _{x \in[0,1)}|f(x)|$. Then in particular $|f(x)| \leq a$ on $[0,1]$, so $f(x) \overline{f(x)}=|f(x)|^{2} \leq a^{2}$ on $[0,1]$. Therefore we see that $\|f\|_{2}^{2}=\int_{0}^{1} f(x) \overline{f(x)} d x \leq a^{2}(1-0)=\|f\|_{\infty}^{2}$. We conclude that $\|f\|_{2} \leq\|f\|_{\infty}$.

Now let A, B be real numbers such that $0<A \leq B$. Let $g(x)$ be a continuous 1periodic function with $\|g\|_{\infty}=k, \int_{0}^{1} g=\ell$, and $k A^{2}-\ell B^{2}>0$. (We can always find such a g, for example by squaring the functions in Problem 16.2.6(d) below.) Now let $h(x)=\sqrt{c+d g}$, where $c=\frac{k A^{2}-\ell B^{2}}{k-\ell}$, and $d=\frac{B^{2}-A^{2}}{k-\ell}$. Note that both c and d are positive. These numbers are chosen so that $\|h\|_{\infty}=\sup _{x \in[0,1]} h=\sqrt{c+k d}=B$ and $\|h\|_{2}=\sqrt{\int_{0}^{1} c+d g}=\sqrt{c+\ell d}=\sqrt{A^{2}}=A$.

- (16.2.6) (a) Because $0 \leq\left\|f_{n}-f\right\|_{2} \leq\left\|f_{n}-f\right\|_{\infty}$ and uniform convergence is convergence in the L^{∞} metric, uniform convergence implies L^{2} convergence.
(b) Let $f_{n}(x)=\sqrt{2 n x}$ for $x \in\left[0, \frac{1}{2 n}\right], f(x)=\sqrt{2-2 n x}$ for $x \in\left[\frac{1}{2 n}, \frac{1}{n}\right]$, and $f_{n}(x)=0$ for the remainder of the interval $[0,1]$, and extend periodically. Then $f_{n} \rightarrow 0$ pointwise, but not uniformly (because $f_{n}\left(\frac{1}{2 n}\right)=1$ for all n). Moreover, $\sqrt{\int_{0}^{1} f^{2}(x) d x}=\sqrt{\frac{1}{2 n}} \rightarrow 0$, so $f_{n} \rightarrow f$ in the L^{2} metric.
(c)Let $f_{n}(x)=(2 x)^{n}$ on $\left[0, \frac{1}{2}\right]$ and $f_{n}(x)=(2-2 x)^{n}$ on $\left[\frac{1}{2}, 1\right]$, and extend periodically. Then $f_{n}\left(\frac{1}{2}\right)=1$ for all n, so f_{n} does not converge to the zero function pointwise, but $\int_{0}^{1} f_{n}(x)^{2} d x=\frac{1}{2 n+1}$, so in the L^{2} metric, the functions f_{n} converge to 0 .
(d) Let $f_{n}(x)=\sqrt{2 n^{2} x}$ for $x \in\left[0, \frac{1}{2 n}\right], f_{n}(x)=\sqrt{2-2 n^{2} x}$ for $x \in\left[\frac{1}{2 n}, \frac{1}{n}\right]$, and $f_{n}(x)=0$ for the remainder of $[0,1]$, and extend periodically. Then $f_{n} \rightarrow 0$ pointwise, but $\int_{0}^{1} f_{n}^{2}=\frac{1}{2}$ for all n, so f_{n} does not converge to 0 in the L^{2} metric.
- (Tao 16.5.1) Observe that

$$
\begin{aligned}
\sum_{n=\infty}^{\infty} \hat{f}(n) e_{n} & =\sum_{n=-\infty}^{\infty} \hat{f}(n)(\cos (2 \pi n x)+i \sin (2 \pi n x)) \\
& =\hat{f}(0)+\sum_{n=1}^{\infty}[(\hat{f}(n)+\hat{f}(-n)) \cos (2 \pi n x)+(\hat{f}(n)-\hat{f}(-n)) i \sin (2 \pi n x)]
\end{aligned}
$$

Here we have used the fact that $\cos x$ is even and $\sin x$ is odd. However, $\hat{f}(0)=$ $\int_{0}^{1} f(x) e^{2 \pi i(0) x} d x=\int_{0}^{1} f(x)(1) d x=\int_{0}^{1} f(x) \cos (2 \pi(0) x) d x=\frac{a_{0}}{2}$, and for the general case, we have

$$
\begin{aligned}
\hat{f}(n)+\hat{f}(-n) & =\int_{0}^{1} f(x) e^{-2 \pi i n x} d x+\int_{0}^{1} f(x) e^{2 \pi n x} d x \\
& =\int_{0}^{1} f(x)[\cos (2 \pi n x)-i \sin (2 \pi n x)] d x+\int_{0}^{1} f(x)[\cos (2 \pi n x)+i \sin (2 \pi n x)] d x \\
& =2 \int_{0}^{1} f(x) \cos (2 \pi n x) d x \\
& =a_{n}
\end{aligned}
$$

Similarly, $\hat{f}(n)-\hat{f}(-n)=-2 i b_{n}$. Therefore $\sum_{n=\infty}^{\infty} \hat{f} e^{2 \pi i n x}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (2 \pi n x)+\right.$ $\left.b_{n} \sin (2 \pi n x)\right)$, and converges in the L^{2} metric to f.
(b) If $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ are absolutely convergent, then

$$
\sum_{n=-\infty}^{\infty}|\hat{f}(n)|=\sum_{n=-\infty}^{-1} \frac{1}{2}\left|a_{n}+i b_{n}\right|+\sum_{n=0}^{\infty} \frac{1}{2}\left|a_{n}-i b_{n}\right|
$$

is also absolutely convergent. Therefore we may apply Theorem 16.5.3.

- (Tao 16.5.2) Let $f(x)=(1-2 x)^{2}$ on $[0,1)$ and \mathbb{Z}-periodic.
(a) We use integration by parts to compute a_{n} and b_{n}, and get the series shown. Since $\sum b_{n}=\sum_{n=1}^{\infty} \frac{4}{\pi^{2} n^{2}}$ converges absolutely, by Exercise 16.5.1, we get uniform convergence of the Fourier series.
(b) At $x=0$ we have $1=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{4}{\pi^{2} n^{2}}$. Solving gives the expected result.
(c) Because $\cos (2 \pi i n x)=\frac{e_{n}+e_{-n}}{2}$, the Fourier coefficients of $f(x)=(1-2 x)^{2}$ are $\hat{f}(0)=$ $\frac{1}{3}$ and $\hat{f}(n)=\hat{f}(-n)=\frac{2}{\pi^{2} n^{2}}$. By the Plancherel Theorem, the series $\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2}$ is absolutely convergent. Because absolutely convergent series can be rearranged, we can rewrite this series as $\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2}=\frac{1}{9}+\sum_{n=1}^{\infty} \frac{8}{\pi^{4} n^{4}}$. Moreover, we know this series converges to $\|f\|_{2}^{2}=\frac{1}{5}$. Ergo, $\frac{1}{5}=\frac{1}{9}+\sum_{n=1}^{\infty} \frac{8}{\pi^{4} n^{4}}$. Solving gives the expected result.
- (Tao 16.5.4) The interesting point is computing \widehat{f}^{\prime}. We know that $\widehat{f^{\prime}}(n)=\int_{0}^{1} f^{\prime}(x) e^{-2 \pi i n x} d x$. After integration by parts, this integral becomes

$$
\widehat{f}^{\prime}(n)=\left.f(x) e^{-2 \pi i n x}\right|_{0} ^{1}+\int_{0}^{1}(2 \pi i n) f(x) e^{-2 \pi i n x} d x=0+2 \pi i n \hat{f}(x)
$$

as promised.

