
Homework 9 Solutions

Math 131B-1

• We see that ||f+g||22 = 〈f+g, f+g〉 = 〈f, f〉+〈f, g〉+〈g, f〉+〈g, g〉 = 〈f, f〉+〈g, g〉 =
||f ||22 + ||g||22.

• We know |g(x)| < M for some M > 0. Therefore

|f ∗ g(x)− f ∗ g(x′)| =
∣∣∣∣∫ 1

0

f(y)g(x− y)dy −
∫ 1

0

f(y′)g(x′ − y)dy

∣∣∣∣
≤ 2M

∣∣∣∣∫ 1

0

(g(x− y)− g(x′ − y))dx

∣∣∣∣ .
Now, since g is uniformly continuous, given ε > 0 there is some δ such that if |x−x′| < δ,
|g(x−y)−g(x′−y)| < ε

2M
. So as long as |x−x′| < δ, we have |f ∗g(x)−f ∗g(x′)| < ε.

• (16.2.3) Let f ∈ C(R/Z;C) be nonzero. Let a = ||f ||∞ = supx∈[0,1) |f(x)|. Then in

particular |f(x)| ≤ a on [0, 1], so f(x)f(x) = |f(x)|2 ≤ a2 on [0, 1]. Therefore we see

that ||f ||22 =
∫ 1

0
f(x)f(x)dx ≤ a2(1− 0) = ||f ||2∞. We conclude that ||f ||2 ≤ ||f ||∞.

Now let A,B be real numbers such that 0 < A ≤ B. Let g(x) be a continuous 1-

periodic function with ||g||∞ = k,
∫ 1

0
g = `, and kA2 − `B2 > 0. (We can always find

such a g, for example by squaring the functions in Problem 16.2.6(d) below.) Now
let h(x) =

√
c+ dg, where c = kA2−`B2

k−` , and d = B2−A2

k−` . Note that both c and d are

positive. These numbers are chosen so that ||h||∞ = supx∈[0,1] h =
√
c+ kd = B and

||h||2 =
√∫ 1

0
c+ dg =

√
c+ `d =

√
A2 = A.

• (16.2.6) (a) Because 0 ≤ ||fn − f ||2 ≤ ||fn − f ||∞ and uniform convergence is conver-
gence in the L∞ metric, uniform convergence implies L2 convergence.

(b) Let fn(x) =
√

2nx for x ∈ [0, 1
2n

], f(x) =
√

2− 2nx for x ∈ [ 1
2n
, 1
n
], and fn(x) = 0

for the remainder of the interval [0, 1], and extend periodically. Then fn → 0 pointwise,

but not uniformly (because fn( 1
2n

) = 1 for all n). Moreover,
√∫ 1

0
f 2(x)dx =

√
1
2n
→ 0,

so fn → f in the L2 metric.

(c)Let fn(x) = (2x)n on [0, 1
2
] and fn(x) = (2− 2x)n on [1

2
, 1], and extend periodically.

Then fn(1
2
) = 1 for all n, so fn does not converge to the zero function pointwise, but∫ 1

0
fn(x)2dx = 1

2n+1
, so in the L2 metric, the functions fn converge to 0.



(d) Let fn(x) =
√

2n2x for x ∈ [0, 1
2n

], fn(x) =
√

2− 2n2x for x ∈ [ 1
2n
, 1
n
], and fn(x) = 0

for the remainder of [0, 1], and extend periodically. Then fn → 0 pointwise, but∫ 1

0
f 2
n = 1

2
for all n, so fn does not converge to 0 in the L2 metric.

• (Tao 16.5.1) Observe that

∞∑
n=∞

f̂(n)en =
∞∑

n=−∞

f̂(n)(cos(2πnx) + i sin(2πnx))

= f̂(0) +
∞∑
n=1

[(f̂(n) + f̂(−n)) cos(2πnx) + (f̂(n)− f̂(−n))i sin(2πnx)]

Here we have used the fact that cos x is even and sinx is odd. However, f̂(0) =∫ 1

0
f(x)e2πi(0)xdx =

∫ 1

0
f(x)(1)dx =

∫ 1

0
f(x) cos(2π(0)x)dx = a0

2
, and for the general

case, we have

f̂(n) + f̂(−n) =

∫ 1

0

f(x)e−2πinxdx+

∫ 1

0

f(x)e2πnxdx

=

∫ 1

0

f(x)[cos(2πnx)− i sin(2πnx)]dx+

∫ 1

0

f(x)[cos(2πnx) + i sin(2πnx)]dx

= 2

∫ 1

0

f(x) cos(2πnx)dx

= an

Similarly, f̂(n)−f̂(−n) = −2ibn. Therefore
∑∞

n=∞ f̂ e
2πinx = a0

2
+
∑∞

n=1(an cos(2πnx)+
bn sin(2πnx)), and converges in the L2 metric to f .

(b) If
∑∞

n=0 an and
∑∞

n=0 bn are absolutely convergent, then

∞∑
n=−∞

|f̂(n)| =
−1∑

n=−∞

1

2
|an + ibn|+

∞∑
n=0

1

2
|an − ibn|

is also absolutely convergent. Therefore we may apply Theorem 16.5.3.

• (Tao 16.5.2) Let f(x) = (1− 2x)2 on [0, 1) and Z-periodic.

(a) We use integration by parts to compute an and bn, and get the series shown. Since∑
bn =

∑∞
n=1

4
π2n2 converges absolutely, by Exercise 16.5.1, we get uniform conver-

gence of the Fourier series.

(b) At x = 0 we have 1 = 1
3

+
∑∞

n=1
4

π2n2 . Solving gives the expected result.



(c) Because cos(2πinx) = en+e−n

2
, the Fourier coefficients of f(x) = (1−2x)2 are f̂(0) =

1
3

and f̂(n) = f̂(−n) = 2
π2n2 . By the Plancherel Theorem, the series

∑∞
n=−∞ |f̂(n)|2

is absolutely convergent. Because absolutely convergent series can be rearranged, we
can rewrite this series as

∑∞
n=−∞ |f̂(n)|2 = 1

9
+
∑∞

n=1
8

π4n4 . Moreover, we know this se-
ries converges to ||f ||22 = 1

5
. Ergo, 1

5
= 1

9
+
∑∞

n=1
8

π4n4 . Solving gives the expected result.

• (Tao 16.5.4) The interesting point is computing f̂ ′. We know that f̂ ′(n) =
∫ 1

0
f ′(x)e−2πinxdx.

After integration by parts, this integral becomes

f̂ ′(n) = f(x)e−2πinx|10 +

∫ 1

0

(2πin)f(x)e−2πinxdx = 0 + 2πinf̂(x)

as promised.


